



### Innovation: Integrating Wholesale, Retail and Technology

### **Chuck Magro** Executive VP & Chief Operating Officer

TFI-FIRT Outlook and Technology Conference - November 20, 2013

# **Key Messages**

| <b>Productivity</b><br>Need to produce<br>more food | <ul> <li>Food production needs to increase by 35% in order to feed the world in 2030</li> <li>Land, water and energy resources are limited</li> <li>Yield improvements are critical</li> </ul> |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficiency<br>with less                             | <ul> <li>Lets not debate application rates</li> <li>Best management practices are more important than you think</li> <li>New products will play an increasing role</li> </ul>                  |
| <b>Technology</b><br>using innovation               | <ul> <li>Precision Agriculture / Big Data hold promise</li> <li>Yield improvements, business value, sustainability</li> </ul>                                                                  |



# **About Agrium**

A Leading Producer of NPK Products: 9 MMT Capacity The Largest Global Ag Retailer: Approximately 1,250 Facilities The 3<sup>rd</sup> Largest Nitrogen Producer Globally

North America -Over 900 Retail Facilities

Nitrogen >5mmt capacity

Potash & Phosphate >3mmt capacity

> South America -Over 50 Retail Facilities

A Major Global Fertilizer Distributor: Over 3 MMT Annual NPK Volumes

A Leading Retailer with Seed and Crop Protection Product Sales of Over \$4.5-billion Australia -Over 250 Retail Facilities

A World Leader in Innovative Controlled-Release Fertilizers

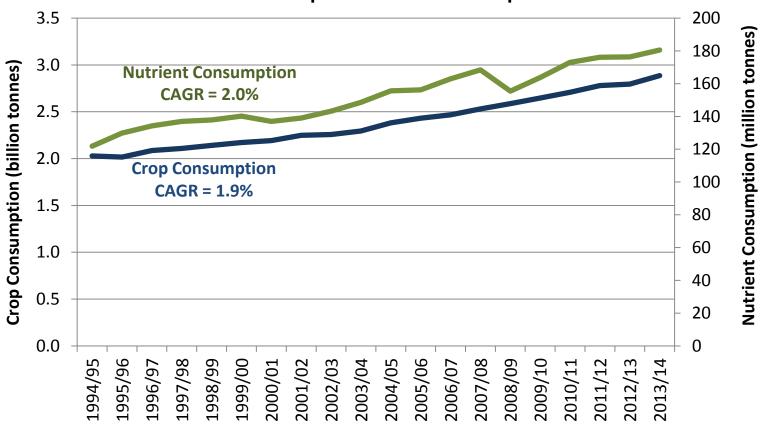


### Productivity



### Technology





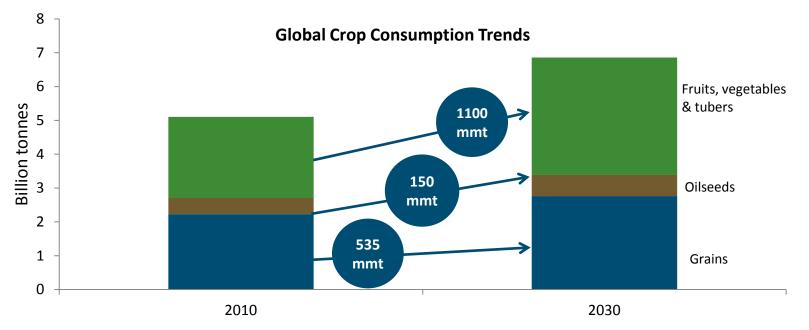





# **Growing Food Consumption**

• Increased fertilizer consumption required to feed increased crop consumption




#### **Historic Crop & Nutrient Consumption**

# **Growing Demand for Crops & Crop Inputs**

#### By 2030 the world will need an additional 1.8B tonnes of crops

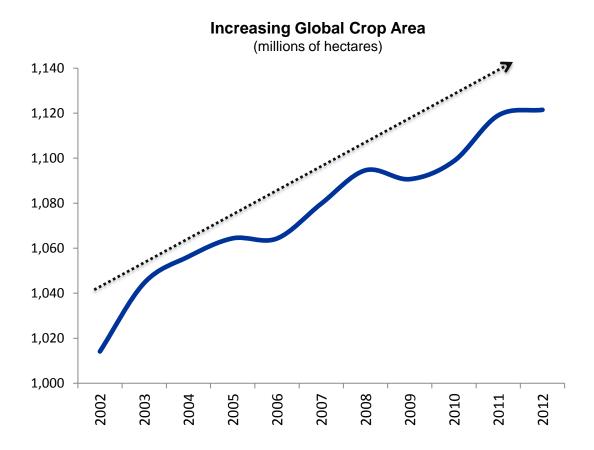
To reach this target, growers globally will need to increase expenditures:

- Additional nutrient expenditure of ~\$40 billion required<sup>1</sup>
- Additional seed/crop protection expenditure of ~\$30 billion required<sup>2</sup>



Source: FAOSTAT, USDA, Integer, Phillips MacDougall, IFA, Green Markets, Agrium

6


<sup>1</sup> Based on per unit application rates from IFA, 2012 U.S. benchmark crop nutrient prices and applied to 2030 crop production.

<sup>2</sup> Based on per unit expenditures in 2012 from Phillips MacDougall data applied to 2030 crop production.



### **Crop Stocks Tight Despite Increases in Global Crop Area**

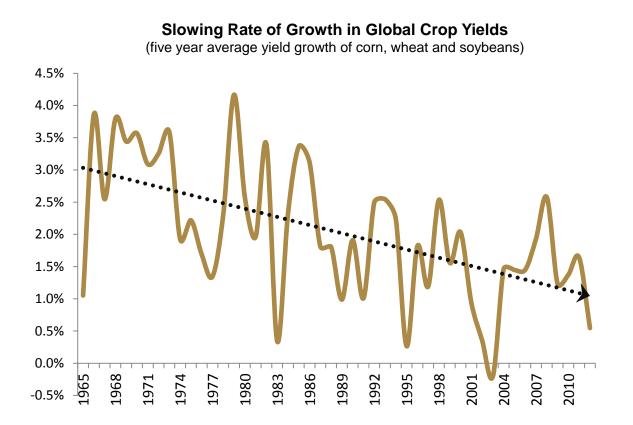
• Demand for crops has been on a steady upward trend for decades, it grows by on average 90 million tonnes per year. Meeting this steady growth in demand is a challenge.





# 10 Year Global Acreage Change by Geography

- Some of the largest area increases have occurred where future area growth potential is low (China, India)
- Future growth potential in Brazil, Argentina, and Africa


| Country/Region | Change<br>(mm ha) |
|----------------|-------------------|
| Africa         | 19                |
| China          | 19                |
| India          | 19                |
| Brazil         | 12                |
| United States  | 7                 |
| Argentina      | 7                 |
| Ukraine        | 6                 |
| Canada         | 5                 |
| Other          | <u>13</u>         |
| World Total    | 107               |

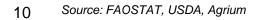


8

# **Declining Growth in Global Crop Yields**

• Global crop area has a limited ability to grow, so future demand growth must be met by improvements in yield




9



# **Required Area / Yield Growth Scenarios**

• The majority of the 90 million tonnes per year of crop consumption growth must be met by increased yields

| Area Growth<br>(mm ha) | Yield Growth<br>(kg/ha) | Yield Growth<br>(%) |
|------------------------|-------------------------|---------------------|
| 0                      | 1,450                   | 30%                 |
| 50                     | 1,170                   | 25%                 |
| 100                    | 920                     | 19%                 |
| 150                    | 690                     | 14%                 |
| 200                    | 480                     | 10%                 |
| 250                    | 280                     | 6%                  |
| 300                    | 100                     | 2%                  |
| 330                    | 0                       | 0%                  |





### Productivity Summary (Message 1)

- Long term Ag fundamentals support the challenge of feeding the world
  - Demand for crops will continue to grow
  - Arable land and water scarcity are real constraints
  - Yield improvements are critical
  - Yield improvements need to be sustainable







### Productivity

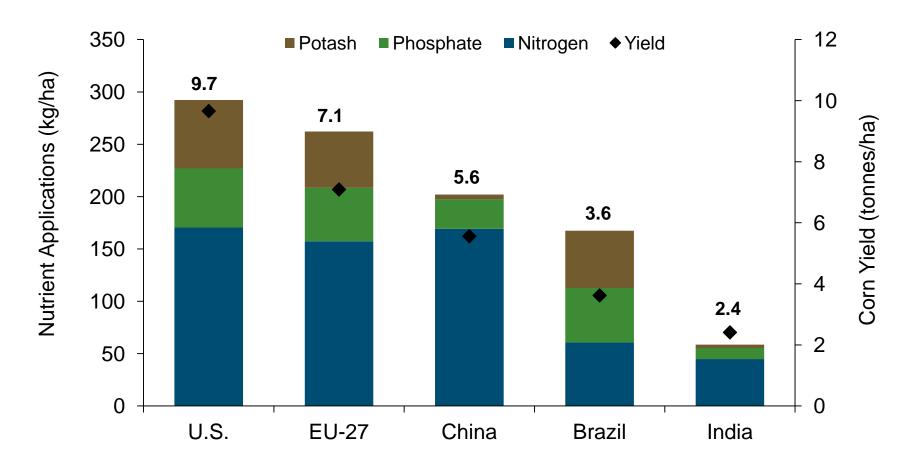


### Efficiency








### Technology

### **Intensive Agriculture Critical**

If the world's **1.5** billion hectares of farm land were farmed organically, there would only be enough food for **2.4** billion people, about **1 in 3** of those in the world today.

# **Efficiency Improvements are Important**

• Balanced and adequate nutrient applications are important for crop yields





# **4R Nutrient Stewardship System**

- Science Based and Measurement Driven
- All 4 Required to:
  - Improve Economics
  - Increase Social Benefits
  - Reduce Environmental Impacts, Protect Habitat and Enhance Soil
- Innovation Constantly Improving Performance

#### **4R Nutrient Management System**

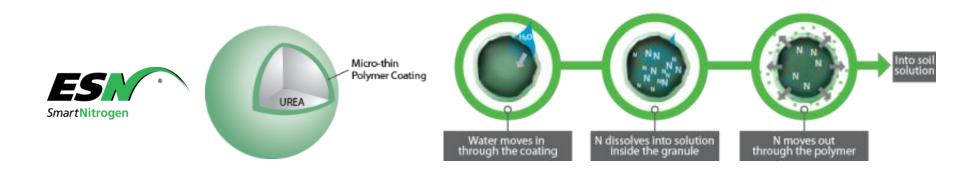
#### **Right Source**

By using the right balance and form of nutrients – for example controlledrelease fertilizer as shown – growers can meet each crop, soil, climatic and operational situation.

#### **Right Rate**

Soil and plant tissue testing ensures nutrient application amounts match the crop's nutrient uptake.

#### **Right Time**


Nutrient availability is matched with crop growth patterns to maximize uptake and reduce losses.

#### **Right Place**

Placing nutrients appropriately for each farm situation reduces losses to the environment and maximizes crop uptake.



### **ESN: How it Works**



ESN is a polymer coated, controlled-release nitrogen (N) product. The unique polymer coating helps protect against all forms of N loss, including volatilization, denitrification, and leaching. The benefits to farmers include:

#### Economic

- Increased Yields
- Improved Crop Quality
- Environmental Incentives

#### Environmental

- Increased Crop Uptake
- Reduced Losses
- Increased Efficiency

#### Social

- Application Flexibility
- Convenient / Ease of Use

### Sustainable return for the grower



### Efficiency Summary (Message 2)

- It's not just about more fertilizer
  - 4R Nutrient Stewardship System will improve overall efficiencies
  - Product development should play a more important role





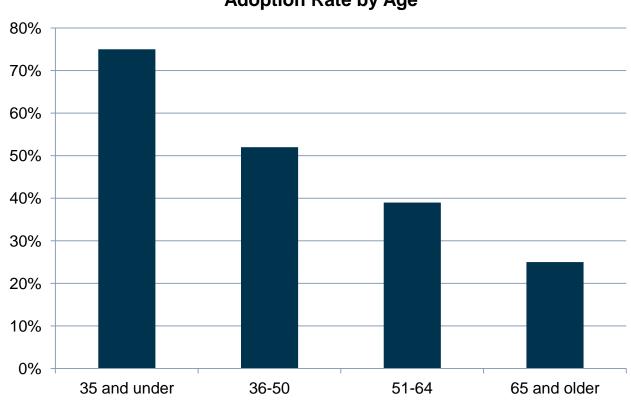


### Productivity





### Efficiency


### Technology

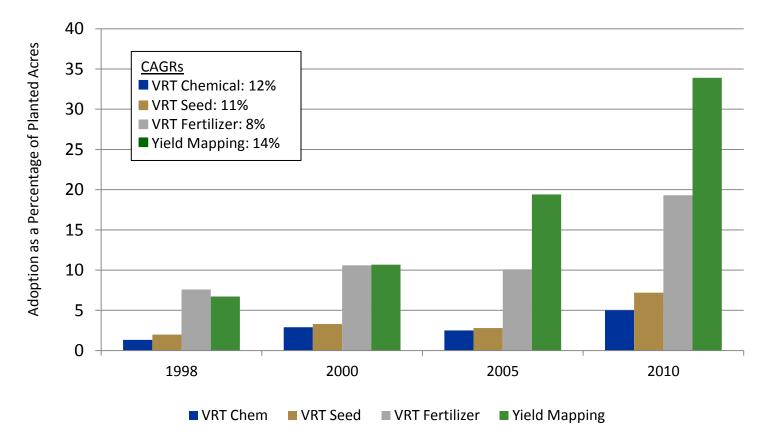




### **Farm Demographics**

Younger farm demographics favor uptake in precision adoption ٠




Adoption Rate by Age



### **Precision Technology**

- Adoption of Precision Technology has increased rapidly
- Expect this trend to continue into the future

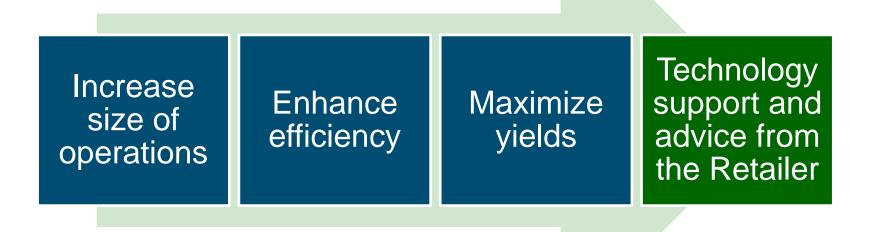
Adoption of Precision Technology in Corn





### Down the Value Chain – Unlocking Yields With Technology











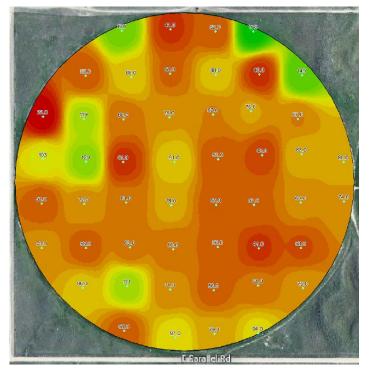

### **What Grower Wants**





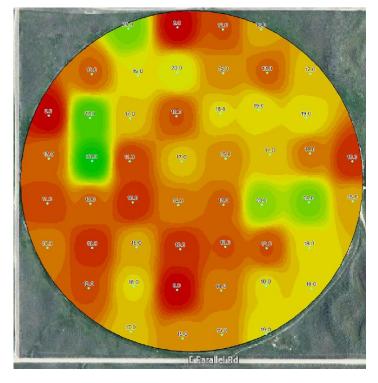
### **NutriScription HD Value Added Services**




Precision soil sampling
Yield monitoring/mapping
VR seed planting (plant population)
VR fertility and VR application services
Field scouting (disease and pest)
Tissue sampling
Crop input record keeping
Field trial analysis

Ability to provide services throughout the growing cycle



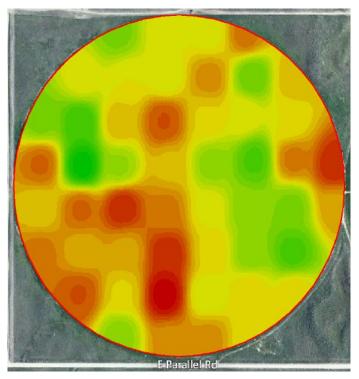

# **Soil Sampling Results**

#### Phosphate (ppm)



Very low levels: 0-65 ppm
 Low levels: 65-100 ppm
 Sufficient levels: >100 ppm

#### Nitrogen (ppm)




Very low levels: 0-15 ppm
 Low levels: 15-23 ppm
 Sufficient levels: >23 ppm



## **Fertilizer Application Recommendation**

#### **UAN-32% Fertilizer Application**



Application rate: 35-36 gallon/acre Application rate: 32-35 gallon/acre Application rate: 30-32 gallon/acre

|            | Without VR Fertility |              |
|------------|----------------------|--------------|
|            | Area                 | 120 acres    |
|            | Yield                | 210 bu/acre  |
|            | Revenue @ \$5.00/bu  | \$1,050/acre |
|            | With VR Fertility    |              |
|            | Area                 | 120 acres    |
|            | Yield                | 220 bu/acre  |
|            | Revenue @ \$5.00/bu  | \$1,100/acre |
| Value P    | roposition           |              |
| Yield diff | erence               | +10 bu/acre  |
| Adjusted   | I revenue difference | +\$50/acre   |
| -          |                      |              |

Value proposition resulting from application only – no change in the total amount of fertilizer used.



# In Season – Field Scouting Report

The in – season services we provide are essential for making sure our pre-planting Rx (fertility, variety, planting rates) are maximized.

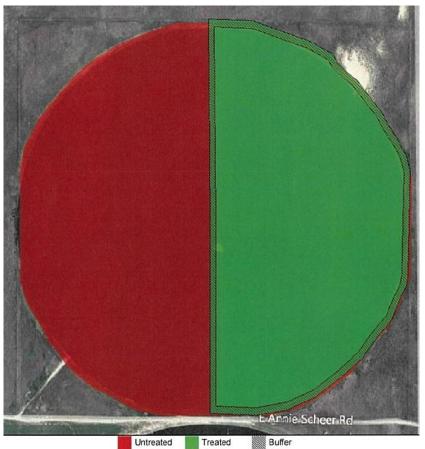
| Pro   | Crop<br>oduction<br>Services                      | Field Scoutin            | ig Report                                |                                |                                       |
|-------|---------------------------------------------------|--------------------------|------------------------------------------|--------------------------------|---------------------------------------|
|       | Grower                                            |                          |                                          |                                |                                       |
|       | Farm                                              | Scout                    |                                          |                                |                                       |
|       | Field                                             | Start Date               | 2013-06-13                               | NIN                            | 192                                   |
|       | Crop CORN, GRAIN                                  | End Date                 | 2013-06-13                               | LAND                           |                                       |
| Dise  | eases                                             |                          |                                          |                                |                                       |
|       | None                                              |                          |                                          | A Carlos                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Inse  | ects & Mites                                      |                          |                                          |                                |                                       |
|       | None                                              |                          |                                          | bing                           |                                       |
| Wee   | eds                                               |                          |                                          | <b>Crop Condition</b>          | ns                                    |
| W1    | Bindweed, Field (Spots)                           |                          |                                          | Growth Stage                   | V5 06/                                |
| W2    | Bindweed, Field (Spots)                           |                          | 06/13                                    | Plant Condition<br>Stand Count | Estimated Yield                       |
| 112   | binuweeu, rieiu (Spois)                           |                          | 06/13                                    | None                           | None                                  |
| W3    | Johnsongrass (Light)                              |                          | 06/13                                    | AVG                            | AVG                                   |
| N4    | Bindweed, Field (Heavy)                           |                          | 06/13                                    | Irrigation                     |                                       |
|       |                                                   |                          | 06/13                                    | Irrigation Type                | Center Pivot 06/                      |
| W5    | Bindweed, Field (Spots)                           |                          | 06/13                                    | Pivot Position<br>On/Off       | South                                 |
| W6    | Bindweed, Field (Heavy)                           |                          | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | Soil Moisture                  | On<br>1'2'3'                          |
|       |                                                   |                          | 06/13                                    |                                | <u>1' 2' 3'</u><br>65% 50% 45%        |
| Field | d Notes                                           |                          |                                          | Notes                          |                                       |
| N1    | dying, crisp                                      |                          |                                          |                                |                                       |
| N2    | dying, burnt leaves                               |                          | 06/13                                    |                                |                                       |
| NZ    | dying, burnt leaves                               |                          | 06/13                                    |                                |                                       |
| N3    | dying, crisp                                      |                          | 00/10                                    |                                |                                       |
|       |                                                   |                          | 06/13                                    |                                |                                       |
| N4    | bind weed heavy, but has b                        | een aprayed and dying    | 06/13                                    |                                |                                       |
| N5    | bind weed crispy                                  |                          | 06/13                                    |                                |                                       |
|       | bind nood onopy                                   |                          | 06/13                                    |                                |                                       |
| N6    | all in all field looks clean. W<br>crispy or dead | eeds that were up are no | w brown,                                 |                                |                                       |
|       |                                                   |                          | 06/13                                    |                                |                                       |
| N7    | bindweed half crispy half ali                     | ve continue to watch     |                                          |                                |                                       |
|       |                                                   |                          | 06/13                                    |                                |                                       |



# In Season – Tissue Sampling Report

Very High

- 8 million acres sampled in 2012
- Our tissue • sampling program is highly successful in recognizing nutritional deficiencies and recommending corrective actions before yields are significantly impacted


| Tissue: Col                | rn - Mio | dwest Labs | - Tassel |         |              |           | Nutr                   |
|----------------------------|----------|------------|----------|---------|--------------|-----------|------------------------|
| Grower                     | Name     |            |          | Tes     | t Date 7/6/2 | 012       | Nutscription.          |
| Field                      | Name     |            |          | Fiel    | d Rep        |           |                        |
|                            | Crop (   | Corn       |          | Sam     | ple ID       |           |                        |
| Sample                     | e Date 1 | 7/3/2012   |          | Si      | ıbfield      |           |                        |
|                            |          | Very Low   | Low      | Optimum | High         | Excessive |                        |
| Total N                    | 2.82     |            |          |         |              | •         | MAX. N-Pact at 1 gal/A |
| Total P                    | 0.24     |            |          |         |              |           | Black Label ZN 1 gal/A |
| Total K                    | 2.08     |            |          |         |              |           | Optimum                |
| Macronutri                 | ents     | Very Low   | Low      | Optimum | High         | Excessive |                        |
| Ca                         | 0.69     |            |          |         |              |           | Optimum                |
| Mg                         | 0.38     |            |          |         |              |           | High                   |
| Na                         | 0.00     |            |          |         |              |           | Optimum                |
| S                          | 0.19     |            |          |         |              |           | Optimum                |
| Micronutri                 | ents     | Very Low   | Low      | Optimum | High         | Excessive |                        |
| Zn-ppm                     | 19.00    |            |          |         |              |           | BOMNZN 10 oz/ac        |
| Mn-ppm                     | 60.00    |            |          |         |              |           | Optimum                |
| Fe-ppm                     | 192.00   |            |          |         |              |           | High                   |
| Cu-ppm                     | 9.00     |            |          |         |              |           | Optimum                |
| B-ppm                      | 10.00    |            |          |         |              |           | BOMNZN 10 oz/A         |
| Petiole                    | s        | Very Low   | Low      | Optimum | High         | Excessive |                        |
| Very<br>Lo<br>Optin<br>Hig | w<br>num | Commen     | ts:      |         |              |           |                        |

Analytical data provided by Midwest Labs. Recommendations provided in this report are proprietary in nature whereby nutrient thresholds used as a reference may or may not match Midwest Labs ranges for this particular crop and growth stage.

The information contained herein is provided "as is" without warranty of any kind. We hereby disclaim all warranties with regard to the information, including all implied warranties of merchantability or fitness for a particular purpose. In no event shall we be liable for any special, indirect or consequential damages or any damages whether in an action of contract, negligence or other tortuous action, arising out of or in connection with the use or performance of information contained herein. Your exclusive remedy, and our total liability to you, shall be for damages not exceeding the price you have paid for the information contained herein.



### **Field Trial Analysis**



| Inside Trial Area – t          | reated                  |  |
|--------------------------------|-------------------------|--|
| Area                           | 59 acres                |  |
| Yield                          | 225 bu/acre             |  |
| Income @ \$5.00/bu             | \$1,125/acre            |  |
| Product cost                   | \$15/acre               |  |
| Adjusted income                | \$1,110/acre            |  |
| Outside Trial Area – untreated |                         |  |
| Outside Trial Area -           | - untreated             |  |
| Outside Trial Area -<br>Area   | untreated<br>67 acres   |  |
|                                |                         |  |
| Area                           | 67 acres                |  |
| Area<br>Yield                  | 67 acres<br>210 bu/acre |  |

Crop-Year: Corn-2010 Field Trial: Fungicide Harvested Area: 126 acres

# Value PropositionYield difference15 bu/acreAdjusted income difference\$60/acre



### Technology Summary (Message 3)

- Technology and Innovation Keys to unlocking yield
  - Precision Ag and Big Data becoming mainstream
  - Yield improvements have solid returns









#### Agrium Inc.

13131 Lake Fraser Drive SE Calgary, Alberta, Canada T2J 7E8 Telephone (403) 225-7000

#### Agrium U.S. Inc.

4582 South Ulster Street, Suite 1700 Denver, Colorado, U.S. 80237 Telephone (303) 804-4400

#### NYSE and TSX: AGU

agrium.com